Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Clin Virol ; 162: 105425, 2023 05.
Article in English | MEDLINE | ID: covidwho-2259565

ABSTRACT

BACKGROUND: Outbreaks of enteroviral meningitis occur periodically and may lead to hospitalization and severe disease. OBJECTIVE: To analyze and describe the meningitis outbreak in patients hospitalized in Israel in 2021-2022, during the COVID-19 pandemic. RESULTS: In December 2021, before the emergence of the SARS-CoV-2 omicron variant, an off-season increase in enterovirus (EV) infections was observed among patients hospitalized with meningitis. In January 2022, enterovirus cases decreased by 66% in parallel with the peak of the Omicron wave, and then increased rapidly by 78% in March (compared with February) after a decline in Omicron cases. Sequencing of the enterovirus-positive samples showed a dominance of echovirus 6 (E-6) (29%) before and after the Omicron wave. Phylogenetic analysis found that all 29 samples were very similar and all clustered in the E-6 C1 subtype. The main E-6 symptoms observed were fever and headache, along with vomiting and neck stiffness. The median patient age was 25 years, with a broad range (0-60 years). CONCLUSION: An upsurge in enterovirus cases was observed after the decline of the SARS-CoV-2 omicron wave. The dominant subtype was E-6, which was present prior to the emergence of the omicron variant, but increased rapidly only after the omicron wave decline. We hypothesize that the omicron wave delayed the rise in E-6-associated meningitis.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Meningitis, Viral , Humans , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Echovirus 6, Human , Enterovirus B, Human , Phylogeny , Israel/epidemiology , Pandemics , COVID-19/epidemiology , SARS-CoV-2 , Meningitis, Viral/epidemiology
2.
Viruses ; 14(6)2022 06 06.
Article in English | MEDLINE | ID: covidwho-1884382

ABSTRACT

In this report, we describe a national-scale monitoring of the SARS-CoV-2 (SC-2) variant dynamics in Israel, using multiple-time sampling of 13 wastewater treatment plants. We used a combination of inclusive and selective quantitative PCR assays that specifically identify variants A19/A20 or B.1.1.7 and tested each sample for the presence and relative viral RNA load of each variant. We show that between December 2020 and March 2021, a complete shift in the SC-2 variant circulation was observed, where the B.1.1.7 replaced the A19 in all examined test points. We further show that the normalized viral load (NVL) values and the average new cases per week reached a peak in January 2021 and then decreased gradually in almost all test points, in parallel with the progression of the national vaccination campaign, during February-March 2021. This study demonstrates the importance of monitoring SC-2 variant by using a combination of inclusive and selective PCR tests on a national scale through wastewater sampling, which is far more amendable for high-throughput monitoring compared with sequencing. This approach may be useful for real-time dynamics surveillance of current and future variants, such as the Omicron (BA.1, BA.2) and other variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Israel/epidemiology , SARS-CoV-2/genetics , Wastewater
3.
Viruses ; 14(5)2022 05 09.
Article in English | MEDLINE | ID: covidwho-1875804

ABSTRACT

Enterovirus D68 (EVD68) was recently identified as an important cause of respiratory illness and acute flaccid myelitis (AFM), mostly in children. Here, we examined 472 pediatric patients diagnosed with severe respiratory illness and screened for EVD68 between April and October 2021. In parallel, samples collected from a wastewater treatment plant (WWTP) covering the residential area of the hospitalized patients were also tested for EVD68. Of the 472 clinical samples evaluated, 33 (7%) patients were positive for EVD68 RNA. All wastewater samples were positive for EVD68, with varying viral genome copy loads. Calculated EVD68 genome copies increased from the end of May until July 2021 and dramatically decreased at the beginning of August. A similar trend was observed in both clinical and wastewater samples during the period tested. Sequence analysis of EVD68-positive samples indicated that all samples originated from the same branch of subclade B3. This study is the first to use wastewater-based epidemiology (WBE) to monitor EVD68 dynamics by quantitative detection and shows a clear correlation with clinically diagnosed cases. These findings highlight the potential of WBE as an important tool for continuous surveillance of EVD68 and other enteroviruses.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Child , Disease Outbreaks , Enterovirus D, Human/genetics , Enterovirus Infections/epidemiology , Humans , Israel/epidemiology , Wastewater
4.
Microbiol Spectr ; 10(2): e0217621, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1741582

ABSTRACT

In this report, we describe the development of a reverse transcription-quantitative PCR (RT-qPCR) assay, termed Alpha-Delta assay, which can detect all severe acute respiratory syndrome coronavirus 2 (SC-2) variants and distinguish between the Alpha (B.1.1.7) and Delta (B.1.617.2) variants. The Alpha- and Delta-specific reactions in the assay target mutations that are strongly linked to the target variant. The Alpha reaction targets the D3L substitution in the N gene, and the Delta reaction targets the spike gene 156 to 158 mutations. Additionally, we describe a second Delta-specific assay that we use as a confirmatory test for the Alpha-Delta assay that targets the 119 to 120 deletion in the Orf8 gene. Both reactions have similar sensitivities of 15 to 25 copies per reaction, similar to the sensitivity of commercial SC-2 detection tests. The Alpha-Delta assay and the Orf8119del assay were successfully used to classify clinical samples that were subsequently analyzed by whole-genome sequencing. Lastly, the capability of the Alpha-Delta assay and Orf8119del assay to identify correctly the presence of Delta RNA in wastewater samples was demonstrated. This study provides a rapid, sensitive, and cost-effective tool for detecting and classifying two worldwide dominant SC-2 variants. It also highlights the importance of a timely diagnostic response to the emergence of new SC-2 variants with significant consequences on global health. IMPORTANCE The new assays described herein enable rapid, straightforward, and cost-effective detection of severe acute respiratory syndrome coronavirus 2 (SC-2) with immediate classification of the examined sample as Alpha, Delta, non-Alpha, or non-Delta variant. This is highly important for two main reasons: (i) it provides the scientific and medical community with a novel diagnostic tool to rapidly detect and classify any SC-2 sample of interest as Alpha, Delta, or none and can be applied to both clinical and environmental samples, and (ii) it demonstrates how to respond to the emergence of new variants of concern by developing a variant-specific assay. Such assays should improve our preparedness and adjust the diagnostic capacity to serve clinical, epidemiological, and research needs.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , Whole Genome Sequencing
5.
PLoS One ; 16(3): e0243265, 2021.
Article in English | MEDLINE | ID: covidwho-1576038

ABSTRACT

Severe acute respiratory disease coronavirus 2 (SARS-CoV-2) which causes corona virus disease (COVID-19) was first identified in Wuhan, China in December 2019 and has since led to a global pandemic. Importations of SARS-CoV-2 to Israel in late February from multiple countries initiated a rapid outbreak across the country. In this study, SARS-CoV-2 whole genomes were sequenced from 59 imported samples with a recorded country of importation and 101 early circulating samples in February to mid-March 2020 and analyzed to infer clades and mutational patterns with additional sequences identified Israel available in public databases. Recorded importations in February to mid-March, mostly from Europe, led to multiple transmissions in all districts in Israel. Although all SARS-CoV-2 defined clades were imported, clade 20C became the dominating clade in the circulating samples. Identification of novel, frequently altered mutated positions correlating with clade-defining positions provide data for surveillance of this evolving pandemic and spread of specific clades of this virus. SARS-CoV-2 continues to spread and mutate in Israel and across the globe. With economy and travel resuming, surveillance of clades and accumulating mutations is crucial for understanding its evolution and spread patterns and may aid in decision making concerning public health issues.


Subject(s)
COVID-19/pathology , Genetic Variation , Genome, Viral/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , High-Throughput Nucleotide Sequencing , Humans , Israel/epidemiology , Mutation , SARS-CoV-2/isolation & purification
6.
Microbiol Spectr ; 9(2): e0050621, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1455679

ABSTRACT

Emerging SARS-CoV-2 (SC-2) variants with increased infectivity and vaccine resistance are of major concern. Rapid identification of such variants is important for the public health decision making and to provide valuable data for epidemiological and policy decision making. We developed a multiplex reverse transcriptase quantitative PCR (RT-qPCR) assay that can specifically identify and differentiate between the emerging B.1.1.7 and B.1.351 SC-2 variants. In a single assay, we combined four reactions-one that detects SC-2 RNA independently of the strain, one that detects the D3L mutation, which is specific to variant B.1.1.7, one that detects the 242 to 244 deletion, which is specific to variant B.1.351, and the fourth reaction, which identifies the human RNAseP gene, serving as an endogenous control for RNA extraction integrity. We show that the strain-specific reactions target mutations that are strongly associated with the target variants and not with other major known variants. The assay's specificity was tested against a panel of respiratory pathogens (n = 16), showing high specificity toward SC-2 RNA. The assay's sensitivity was assessed using both in vitro transcribed RNA and clinical samples and was determined to be between 20 and 40 viral RNA copies per reaction. The assay performance was corroborated with Sanger and whole-genome sequencing, showing complete agreement with the sequencing results. The new assay is currently implemented in the routine diagnostic work at the Central Virology Laboratory, and may be used in other laboratories to facilitate the diagnosis of these major worldwide-circulating SC-2 variants. IMPORTANCE This study describes the design and utilization of a multiplex reverse transcriptase quantitative PCR (RT-qPCR) to identify SARS-COV-2 (SC2) RNA in general and, specifically, to detect whether it is of lineage B.1.1.7 or B.1.351. Implementation of this method in diagnostic and research laboratories worldwide may help the efforts to contain the COVID-19 pandemic. The method can be easily scaled up and be used in high-throughput laboratories, as well as small ones. In addition to immediate help in diagnostic efforts, this method may also help in epidemiological studies focused on the spread of emerging SC-2 lineages.


Subject(s)
COVID-19/diagnosis , High-Throughput Nucleotide Sequencing/methods , High-Throughput Screening Assays/methods , SARS-CoV-2/classification , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , Genome, Viral/genetics , Humans , Israel/epidemiology , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Whole Genome Sequencing
7.
Vaccines (Basel) ; 9(8)2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1348700

ABSTRACT

Response to and monitoring of viral outbreaks can be efficiently focused when rapid, quantitative, kinetic information provides the location and the number of infected individuals. Environmental surveillance traditionally provides information on location of populations with contagious, infected individuals since infectious poliovirus is excreted whether infections are asymptomatic or symptomatic. Here, we describe development of rapid (1 week turnaround time, TAT), quantitative RT-PCR of poliovirus RNA extracted directly from concentrated environmental surveillance samples to infer the number of infected individuals excreting poliovirus. The quantitation method was validated using data from vaccination with bivalent oral polio vaccine (bOPV). The method was then applied to infer the weekly number of excreters in a large, sustained, asymptomatic outbreak of wild type 1 poliovirus in Israel (2013) in a population where >90% of the individuals received three doses of inactivated polio vaccine (IPV). Evidence-based intervention strategies were based on the short TAT for direct quantitative detection. Furthermore, a TAT shorter than the duration of poliovirus excretion allowed resampling of infected individuals. Finally, the method documented absence of infections after successful intervention of the asymptomatic outbreak. The methodologies described here can be applied to outbreaks of other excreted viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where there are (1) significant numbers of asymptomatic infections; (2) long incubation times during which infectious virus is excreted; and (3) limited resources, facilities, and manpower that restrict the number of individuals who can be tested and re-tested.

8.
Sci Total Environ ; 789: 148002, 2021 May 24.
Article in English | MEDLINE | ID: covidwho-1240614

ABSTRACT

Investigation of SARS-CoV-2 spread and identification of variants in sewers has been demonstrated to accurately detect prevalence of viral strains and is advantageous to clinical sampling in population catchment size. Herein, we utilized an established nationwide system of wastewater sampling and viral concentration approaches to perform large-scale surveillance of SARS-CoV-2 variants in nine different locations across Israel that were sampled from August 2020 to February 2021 and sequenced (n = 58). Viral sequences obtained from the wastewater samples had high coverages of the genome, and mutation analyses successfully identified the penetration of the B.1.1.7 variant into Israel in December 2020 in the central and north regions, and its spread into additional regions in January and February 2021, corresponding with clinical sampling results. Moreover, the wastewater analysis identified the B.1.1.7 variant in December 2020 in regions in which non-sufficient clinical sampling was available. Other variants of concern examined, including P.1 (Brazil/Manaus), B.1.429 (USA/California), B.1.526 (USA/New York), A.23.1 (Uganda) and B.1.525 (Unknown origin), did not show consistently elevated frequencies. This study exemplifies that surveillance by sewage is a robust approach which allows to monitor the diversity of SARS-CoV-2 strains circulating in the community. Most importantly, this approach can pre-identify the emergence of epidemiologically or clinically relevant mutations/variants, aiding in public health decision making.

9.
PLoS One ; 15(11): e0241164, 2020.
Article in English | MEDLINE | ID: covidwho-940745

ABSTRACT

The COVID-19 pandemic and the fast global spread of the disease resulted in unprecedented decline in world trade and travel. A critical priority is, therefore, to quickly develop serological diagnostic capacity and identify individuals with past exposure to SARS-CoV-2. In this study serum samples obtained from 309 persons infected by SARS-CoV-2 and 324 of healthy, uninfected individuals as well as serum from 7 COVID-19 patients with 4-7 samples each ranging between 1-92 days post first positive PCR were tested by an "in house" ELISA which detects IgM, IgA and IgG antibodies against the receptor binding domain (RBD) of SARS-CoV-2. Sensitivity of 47%, 80% and 88% and specificity of 100%, 98% and 98% in detection of IgM, IgA and IgG antibodies, respectively, were observed. IgG antibody levels against the RBD were demonstrated to be up regulated between 1-7 days after COVID-19 detection, earlier than both IgM and IgA antibodies. Study of the antibody kinetics of seven COVID 19 patients revealed that while IgG levels are high and maintained for at least 3 months, IgM and IgA levels decline after a 35-50 days following infection. Altogether, these results highlight the usefulness of the RBD based ELISA, which is both easy and cheap to prepare, to identify COVID-19 patients even at the acute phase. Most importantly our results demonstrate that measuring IgG levels alone is both sufficient and necessary to diagnose past exposure to SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Immunoglobulin G/immunology , Pandemics , Protein Domains/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/virology , Cohort Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL